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Abstract: Medical records scoring is important in a health care system. Artificial intelligence (AI)
with projection word embeddings has been validated in its performance disease coding tasks,
which maintain the vocabulary diversity of open internet databases and the medical terminology
understanding of electronic health records (EHRs). We considered that an AI-enhanced system might
be also applied to automatically score medical records. This study aimed to develop a series of deep
learning models (DLMs) and validated their performance in medical records scoring task. We also
analyzed the practical value of the best model. We used the admission medical records from the Tri-
Services General Hospital during January 2016 to May 2020, which were scored by our visiting staffs
with different levels from different departments. The medical records were scored ranged 0 to 10. All
samples were divided into a training set (n = 74,959) and testing set (n = 152,730) based on time, which
were used to train and validate the DLMs, respectively. The mean absolute error (MAE) was used to
evaluate each DLM performance. In original AI medical record scoring, the predicted score by BERT
architecture is closer to the actual reviewer score than the projection word embedding and LSTM
architecture. The original MAE is 0.84 ± 0.27 using the BERT model, and the MAE is 1.00 ± 0.32
using the LSTM model. Linear mixed model can be used to improve the model performance, and
the adjusted predicted score was closer compared to the original score. However, the project word
embedding with the LSTM model (0.66 ± 0.39) provided better performance compared to BERT
(0.70 ± 0.33) after linear mixed model enhancement (p < 0.001). In addition to comparing different
architectures to score the medical records, this study further uses a mixed linear model to successfully
adjust the AI medical record score to make it closer to the actual physician’s score.

Keywords: medical records scoring; projection word embedding; long short-term memory; bidirec-
tional encoder representations from transformers; artificial intelligence; natural language processing;
electronic health records
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1. Introduction

With the increasing advancement of technology, the data amount generated by humans
is growing explosively [1]. Effectively taking advantage of these growing data may bring
valuable information, which many successful cases from different industries [2] have
already proved. However, the majority of these data are not structured [3], which cannot be
directly used by traditional analytical methods. At the same time, it is expected to employ
new algorithms to use these data to allow for stronger decision-making capacity [4,5]. In
recent years, with the breakthrough developments of the deep neural network in diverse
fields, we are already capable of directly analyzing data in the forms of videos, texts, and
voices. Hence, the focus of researches is now to develop applications to solve practical
problems.

The medical system is an important field that is very suitable to develop the above-
mentioned applications. Medical knowledge is accumulating quickly, making it more and
more possible for doctors to have knowledge gaps [6], which may cause misdiagnoses and,
thus, urgently need to be solved [7]. Computer-aided diagnosis systems have been greatly
developed in recent years, aiming to solve this problem, yet unsuccessfully so far [8]. This
is probably because the majority of medical data are non-structural data [9]; take cancer, for
example, where about 96% of cancer diagnoses are made from pathological section reports,
the data of which, however, are recorded in text descriptions and videos [10]. Thus, it is
difficult for traditional models to link these original non-structural data with diagnosis
information directly. With the advancement of artificial intelligence (AI) technology, the
new generation of computer-aided diagnosis systems is expected to make great contribu-
tions to the intellectualization of medical systems. It can further eliminate human errors
to increase the quality of medical care [11]. In 2012, AlexNet was the ILSVRC champion,
leading the 3rd AI revolution [12]. Since then, more powerful deep learning models have
been developed, such as VGGNet [13], Inception Net [14], ResNet [15], DenseNet [16], etc.
This revolution led by deep learning has made enormous progress in image recognition
tasks, driving breakthroughs in related research. Computer-aided diagnosis tools built
based on deep learning technology have led to an increase in medical care quality [11].
Examples include lymph node metastasis detection [17], diabetic retinopathy detection [18],
skin cancer classification [19], pneumonia detection [20], bleeding identification [21], etc.
There have been over 300 studies (mostly in the last 2 years) using such technologies in
medical image analysis [22]. It is worth mentioning that the most impressive capacity of
deep learning technology is automatic feature extraction. With the precondition of a large
database for annotation, it has been proven to reach, or even surpass, the level of human
experts [15,23,24].

The current method to use a large amount of information from medical records is to
code through recognition by experts and according to ICD (The International Statistical
Classification of Diseases and Related Health Problems). This work is not only necessary
for our national health insurance declaration system but may also be used in disease mon-
itoring, hospital management, clinical studies, and policy planning. However, artificial
classification is not only expensive but is also time-inefficient, which is the most important.
For example, in disease monitoring, since the outbreak of infectious disease will cause
large casualties [25], many countries have developed their disease monitoring systems
specifically aiming at contagious diseases, such as the Real-time Outbreak and Disease
Surveillance (RODS) system [26]. To ensure time efficiency, this system stipulates emer-
gency physicians to input data within required time limits when identifying notifiable
diseases, making it hard to be promoted to other diseases. With the advancement of data
science, it has been universally expected that an automatic disease interpretation model can
be developed to solve the high-cost and time-inefficient problems of artificial interpretation.

Due to the popularization of medical records electronization, a great number of studies
have attempted to use this information for text mining and ICD code classification. The cur-
rent technology primarily uses a bag-of-words model to standardize text medical records,
then uses a support vector machine (SVM), random forest tree, and other classifiers for
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diagnosis classification [27–31]. However, previous studies have found that these methods
were incapable of accurate diagnosis classification because of the particularity and diversity
of clinical terms, where synonyms need to be properly processed before data preprocess-
ing [10]. A complete medical dictionary integrates the currently recommended forms of
clinical terms; yet, it is almost impossible due to the complexity of clinical terms. There-
fore, traditional automatic classification programs can hardly make significant progress.
In addition, the bag-of-words model treats different characters as different features and
counts the number of features in one article. Although this makes it possible to use a
dictionary to handle the synonym problem, similar characters would be considered two
different features. Thus, the number of features integrated by the bag-of-words model
will be strikingly huge, causing a curse of dimensionality when classified by subsequent
classifiers, leading to inefficiency and slow progress of traditional algorithms.

Other than classification efficiency, the greatest challenge for traditional algorithms
is new diseases. For instance, there was an H1N1 outbreak in 2009, with related cases
that had never been recorded before 2008. Traditional classification algorithms are com-
pletely unable to perform proper classification of newly emerged words [27–31]. This
disadvantage makes it absolutely impossible for traditional methods to reach full automa-
tion. Regarding this issue, we proposed word embedding as a technical breakthrough
in disease classification. Since the 20th century, word embedding has been an important
technology to allow computers to understand the semantic meaning further. Its core logic
is hoping to characterize every single word into a vector in high-dimensional space and
expecting similar vectors for similar characters/words to express semantic meaning [32,33].
The word2vec published by the Google team in 2013 is considered the most important
breakthrough in recent word embedding studies. It has been verified to allow similar
characters to have very high cosine similarity and very close Euclidean distance in vector
space [34]. However, this technology has a disadvantage that, once applied, it converts an
article into an unequal matrix, making it inapplicable for traditional classifiers, such as SVM
and random forest trees. A general solution is to average or weighted average the word
vector of all characters in an article as semanteme [35]. However, from the MultiGenre NLI
(MultiNLI) Corpus competition release by the natural language research team of Stanford
(https://nlp.stanford.edu/projects/snli/), we can still see that combining modern AI tech-
nology gives better efficiency to models. Language processing conducts analysis mostly
based on Recurrent Neural Network (RNN) or Convolutional Neural Network (CNN).
Its core principle is to use convolutional layer (does not have memory but can gradually
integrate surrounding single-character information in higher-order features, requires more
layers) or Long Short-Term Memory Unit (has short- and long-term memory, thus needing
fewer layers) for feature extraction and is able to process information in matrix form [36].
CNN has become the primary method in all computer vision competitions. Its reason
for success is a fuzzy matching technique of convolutional layer, allowing for integrating
similar image features. We will be able to change the convolutional layer from recognizing
similar image features to recognizing similar vocabularies through certain designs. Hence,
CNN has been applied in text mining, such as semantic classification [37], short sentence
searching [38], and chapter analysis [39], and has shown considerably good efficiency. In
the most recent study, Bidirectional Encoder Representations from Transformers (BERT), de-
veloped by Google, has swept all kinds of natural language process competitions [40]. Yet,
its core is still good work/sentence/paragraph embedding. Generally speaking, combining
good embedding technology with modern deep learning neural networks is undoubtedly
the best option for current natural language processing tasks.

Our team has already applied it in disease classification of discharge record sum-
maries and proved that it compared with traditional models. AI model with combined
word embedding model and CNN reduces 30% error rate in disease classification tasks,
makes modeling easier by avoiding troublesome text integration preprocessing, and learns
external language resources through unmonitored learning to integrate similarity among
clinical clauses [41]. However, although the combination of word embedding and CNN
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is better in disease classification tasks than traditional methods, its accuracy still cannot
be compared with humans. One of the reasons is the error in understanding the seman-
tic meaning. Therefore, improving the word embedding model’s understanding of the
meaning of medical terms might increase its subsequent analytical efficiency [42]. There
are two studies that have evaluated the application of word embedding models trained by
different resources on biomedical NLP and found EHR-trained word embedding could
better capture semantic property [43,44]. On the other hand, external data resources have a
neglected advantage in that the vocabulary diversity of external internet data resources is
far more than that of internal task database. This advantage will greatly affect real disease
coding tasks. Hence, an embedded training process needs to be developed to maintain the
vocabulary diversity of internet resources and medical terms’ understanding of the internal
task database. A recent word embedding comparison study showed that EHR-trained work
embedding could usually better capture medical semantic meaning [43]. Even the research
team of abroad Mayo Clinic uses an EHR with a large amount of data. The total number
of words is only about 100,000, the vocabulary diversity of which is still far less than the
external database [43,44]. This is due to the lack of some rare diseases and periodic diseases,
such as the 2003 SARS outbreak and the 2009 H1N1 outbreak. Therefore, EHR-trained
word embedding models are unable to include enough vocabulary. For this reason, our
team developed a projection word embedding model that has the vocabulary diversity of
Wikipedia/PubMed, as well as an understanding of medical terms in EHR [45].

A medical record is a historical record and also the foundation of a patient’s medical
care. It records the patient’s conditions, reasons, results of examinations/tests, treatment
methods, and results during care processes. It integrates and analyzes patients’ related
information, presents the executive ground of medical decisions, and even affects national
health policy. The basic purpose of medical records is to remind oneself or other medical
care colleagues of a patient’s daily conditions and attending physician’s current thoughts.
When medical treatment is being performed, the medical record serves as the communi-
cation tool among physicians and means for continuous treatment. In other words, the
medical record is the only text material that records a patient’s conditions and focuses on
all medical care personnel. A medical record is an index of medical care quality reflecting a
physician’s clinical thinking and diagnostic basis. It serves as the reference for learning,
research, and education. Meanwhile, it also serves as the evidence for medical disputes to
clarify the attribution of liabilities. The medical record is the foundation of patient care as
it records the contents of patient care provided by medical personnel. Thus, all results ob-
tained from observation or examination can be found on the medical record. Therefore, any
change in the patient’s condition can be found from the medical record so that the patient’s
current condition can be evaluated for suitable treatments. Moreover, communication with
a patient should also be included in the medical record so that medical personnel can learn
the patient’s expectations on the treatment, resulting in a closer doctor-patient relationship.
For other professionals, a detailed medical record saves a lot of communication time and
avoids misunderstanding or missing the patient’s previous conditions that may lead to
mistreatment.

The content of medical records also has legal effects. It is the basis of insurance benefits
and even affects national health policy. For example, public health studies usually need to
include case information under national health insurance, and, through studying a large
number of medical records, such studies can help public health researchers and medical
officials to establish more suitable public health decisions and administrative rules that
protect the rights and interests of both doctors and patients. Clinical decision-making
guides formulated by many specialized medical associations also used information from
medical records. The implicit demographic information from these medical records is also
collected at the national level and published as national health demographic information
to compare with other countries so as to serve as a way to communicate and learn from
each other for mutual benefits.
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In this study, as shown in the graphical abstract, a scoring database was established
by experts performing scoring on medical records. An AI model was trained to learn
experts’ scoring logics so as to screen high-quality medical record summaries. In contrast,
the database made up of which will have the chance to promote the establishment of
other subsequent AI models, improve model accuracy, and serve as a teaching example to
improve medical education efficiency.

2. Method
2.1. Data Source

In this study, inpatient medical records from Tri-Service General Hospital from 1
January 2016 to 31 December 2019 were used as the basic database, which was ethically
approved by institutional review board (IRB NO. A202005104). Physicians of different
levels from different departments were invited for medical records summary scoring. Scor-
ing dimensions include different indexes, based on clinical writing standards, it contains
12 scoring items from each detailed structure of the QNOTE scale’s inpatient record, in-
cluding chief of complaint, history of the present illness, problem list, past medical history,
medications, adverse drug reactions and allergies, social and family history, review of
systems, physical findings, assessment, plan of care, and follow-up information. The
completeness of each item’s record, as well as the 5 structures (completeness, correctness,
concordance, plausibility, and currency) of electronic medical records’ examination in-
formation, are evaluated in 5 levels of the Likert scale: strongly disagree, disagree, no
comment (not agree nor disagree), agree, and strongly agree. Specialists from different
departments were required to review 227,689 medical records and preliminarily score them
on a 10-point Likert scale based on the average of above 5 structures. These scores were
then used as the training target of the AI model to represent medical record writing quality.
All samples were divided into a training set (n = 74,959) and testing set (n = 152,730) based
on time, and then they were evaluated by different departments. Data of the testing set
was compared with the actual scores for analysis, and MAE from the Likert scale was used
as the evaluation index for model performance. In the end, the aforementioned model
was applied in Tri-Service General Hospital. A medical record auto-scoring system was
established in the hospital so as to screen high-quality medical records for future teaching
and research studies.

2.2. AI Algorithm

The collected medical records and various writing quality indicators can be used for
artificial intelligence model training. The model architecture uses the word embedding
and LSTM model developed by our team. The word embedding also uses the projection
word embedding comparison table to perform single-character conversion mathematical
vectors and uses the entire input article as the input matrix. We used projection word
embedding to construct a deep convolutional network model to enable the network to
integrate the transformed semantic vectors and extract written medical records based on
different word combinations. First, we used the word embedding comparison table trained
by Wikipedia and PubMed library, and then we used EHR to perform projection word
embedding training. Next, we connected the converted text matrix in parallel so that the
network can refer to two different word embedding sources simultaneously. In addition,
we used different word embeddings separately as conversion sources to compare their
effects on prediction performance.

2.2.1. Long Short-Term Memory (LSTM)

In RNN, the output can be given back to the network as input, thereby creating a loop
structure. RNNs are trained through backpropagation. In the process of backpropagation,
RNN will encounter the problem of vanishing gradient. We use the gradient to update the
weight of the neural network. The problem of vanishing gradient is when the gradient
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shrinks as it propagates backwards in time. Therefore, the layers that obtain small gradients
will not learn but will, instead, cause the network to have short-term memory.

The LSTM architecture was introduced by Hochreiter and Schmidhuber [46] to al-
leviate the problem of vanishing gradients. LSTMs can use a mechanism called gates to
learn long-term dependencies. These gates can learn which information in the sequence is
important to keep or discard. LSTMs have three gates: input, forget, and output. This is
the core of the LSTM model, where pointwise addition and multiplication are performed
to add or delete information from the memory. These operations are performed using the
input and forget gate of the LSTM block, which also contains the output “tanh” activation
function. In addition to using the original architecture and model parameters, the other
settings are Epochs = 20, Batch size = 300, and Learning rate = 0.001.

2.2.2. Bidirectional Encoder Representation from Transformers (BERT)

Other than the original word embedding and LSTM architecture, BERT architecture
was also used for feature extraction. BERT is a recent attention-based model with a
bidirectional Transformer network that was pre-trained on a large corpus. This pre-trained
model is then effectively used to solve various language tasks with fine-tuning [40,47].
In brief terms, the task-specific BERT architecture represents input text as sequential
tokens. The input representation is generated with the sum of the token embeddings, the
segmentation embeddings and the position embeddings [40]. For a classification task, the
first word in the sequence is a unique token which is denoted with [CLS]. An encoder layer
is followed with a fully-connected layer at the [CLS] position. Finally, a softmax layer is
used as the aggregator for classification purposes [47]. If the NLP task has pair of sentences
as in question-answer case, the sentence pairs may be separated with another special token
[SEP]. BERT multilingual base model (cased) is used as transfer feature learning, and other
parameters are set to Epochs = 30, Batch size = 32, and Learning rate = 0.00001.

Through these two methods, we can enable the network to learn the semantic mean-
ings of different individual characters. We can also let the network learn from different
texts, such as from Wikipedia and PubMed. Then, through EHR for Fine-tune retraining,
the BERT architecture that has finished learning only needs to change from predicting its
context output to predicting the categories of multiple medical record quality dimensions;
then, it can be trained with medical record information.

2.3. Linear Mixed Model Function for Medical Records Scoring Prediction

Suppose data are collected from m independent groups of observations (called clusters
or subjects in longitudinal data).

Ym = XmBm + em. (1)

Here, Ym is an n × 1 vector of the dependent variable for patient m, and Xi is an n × q
matrix of all the independent variables for patient m. Bm is a q × 1 unknown vector of
regression coefficients, and em is an n × 1 vector of residuals. This results in a multi-level
mixed model with random effects for all samples, which is expressed as

Y = XB + Zu + e, (2)

where Z is a matrix of known constants included in the information of the independent
variables with random effects, and u is a matrix of random effects for all patients.

The best linear unbiased prediction (BLUP) is important for predicting the medical
record score in each patient, and it can be calculated by following the steps in [48].

Ym is an n × 1 vector of the dependent variable for patient m, and Xi is an n × q matrix
of all independent variables for patient m. Moreover, Zm is an n × p matrix of independent
variables with random effects for patient m. These matrices contain the observed data and
are defined as
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Ym =


y1,m
y2,m
. . .

yn,m

, Xm =


1 x1,1,m . . . x1,q−1,m
1 x2,1,m . . . x2,q−1,m

. . . . . . . . . . . .
x1 xn,1,m . . . xn,q−1,m

, Zm =


1 x1,1,m . . . x1,p−1,m
1 x2,1,m . . . x2,p−1,m

. . . . . . . . . . . .
x1 xn,1,m . . . xn,p−1,m

. (3)

After building the prediction tool, we have the G matrix, B vector and σ2. G is
a variance co-variance matrix of the random effects (p × p), and B is the fixed effect
coefficients vector (q × 1). σ2 is the variance of the residuals. We can calculate a matrix
R (n × n) using

G =


τ2

1 τ12 . . . τ1p
τ12 τ2

2 . . . τ2p
. . . . . . . . . . . .
τ1p τ2p . . . τ2

p

, B =


b0
b1
. . .

bq−1

, R = σ2 In×n =


σ2 0 . . . 0
0 σ2 . . . 0

. . . . . . . . . . . .
0 0 . . . σ2

. (4)

If the independence assumption holds (i.e.,
[

u
e

]
∼ N

([
0
0

]
,
[

G 0
0 R

])
), then

we can calculate the variance co-variance matrix (Σm) of Ym using

Σm = ZmGZT
m + R. (5)

Finally, the BLUP of the random effect in patient m can be estimated using

BLUPm = GZT
mΣ−1

m (Ym − XmB). (6)

We can estimate the regression coefficients (Bm) in patient m based on the above result,
and Bm can be used to predict the disease progression. Bm can be calculated using

Bm = B + BLUPm (7)

Note that this calculation cannot make direct forecasts without the co-variable values.
Thus, the co-variables information at the time of interest must be generated. We propose
two methods for generating this information: (1) assume consistency between the last
time and the time of interest and (2) predict the linear expectations. We will assess these
methods in our analysis. Unquestionably, clinicians can use the most reasonable values
based on their judgment to predict the co-variables at the time of interest. In summary, we
can combine this method with population information to predict the medical record score.

2.4. Evaluation Criteria

We evaluated the generalization performance of each model in the training and testing
samples. Mean absolute error (MAE) were used to compare the performance of the models,
as follows:

MAE =
∑N

i=1|yi − ŷi|
N

. (8)

3. Results

The research scheme is shown in Figure 1, where a total of 227,689 medical records
were scored by experts. In AI model training, the medical records were divided into the
training set and testing set based on year, where 74,959 records were used to establish BERT
and LSTM models, and 152,730 records were used to test record scoring. LMM was then
employed to modify BERT and LSTM to establish another two models. In the end, MAE
was used to compare the four models’ efficiencies in predicting medical record scores.
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to assure a robust and reliable data set for training and testing of the network. Once a medical records data were placed in
one of the data sets, that individual’s data were used only in that set, avoiding ‘cross-contamination’ among the training
and testing sets. The details of the flow chart and how each of the data sets was used are described in the Methods.

Table 1 shows the distribution of medical records in different departments. It can be
seen that 74,959 records were included for modeling, and then 152,730 records were used
for prediction. The average score from experts was 7.24 ± 1.02 for the training set and
7.67 ± 0.84 for the testing set; after BERT and LSTM modeling of medical record scoring,
the average score of BERT prediction in the testing set was 7.47 ± 0.89, and 7.15 ± 1.05 for
LSTM. After training through the BERT and LSTM models, the artificial intelligence model
had already scored the medical records.

Table 1. Medical records distribution and scoring in the training set and testing set of different departments.

Training Set (n = 74,959) Testing Set (n = 152,730) p-Value

Department <0.001 *
General surgery 4843 (6.5%) 10,504 (6.9%)
Pleural surgery 1932 (2.6%) 3472 (2.3%)
Cardiovascular surgery 3904 (5.2%) 8319 (5.4%)
Colorectal & rectal surgery 491 (0.7%) 3479 (2.3%)
Urology surgery 1330 (1.8%) 3313 (2.2%)
Pediatric Surgery 99 (0.1%) 85 (0.1%)
Plastic surgery 1748 (2.3%) 4009 (2.6%)
Pulmonary Medicine 10,268 (13.7%) 19,065 (12.5%)
Cardiology 2723 (3.6%) 4765 (3.1%)
Nephrology 2473 (3.3%) 3749 (2.5%)
Blood Oncology 9257 (12.3%) 17,110 (11.2%)
Endocrine and metabolic 839 (1.1%) 1477 (1.0%)
Gastroenterology 3861 (5.2%) 7372 (4.8%)
Rheumatism, immunology and allergy 1247 (1.7%) 2624 (1.7%)
Trauma 756 (1.0%) 940 (0.6%)
Infection and Tropical Medicine 3701 (4.9%) 8488 (5.6%)
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Table 1. Cont.

Training Set (n = 74,959) Testing Set (n = 152,730) p-Value

Psychiatric department 6531 (8.7%) 14,331 (9.4%)
Neurological department 3159 (4.2%) 7374 (4.8%)
Pediatric department 1138 (1.5%) 2474 (1.6%)
Dental department 1223 (1.6%) 2483 (1.6%)
Surgery department 607 (0.8%) 817 (0.5%)
Dermatology department 5 (0.0%) 109 (0.1%)
ENT department 2388 (3.2%) 3907 (2.6%)
Radiology 40 (0.1%) 175 (0.1%)
Emergency department 0 (0.0%) 300 (0.2%)
Family and Community Medicine 188 (0.3%) 655 (0.4%)
Nuclear Medicine Department 144 (0.2%) 153 (0.1%)
Neurosurgery 3219 (4.3%) 6937 (4.5%)
Orthopedic department 3482 (4.6%) 7876 (5.2%)
Obstetrics and Gynecology 1766 (2.4%) 3222 (2.1%)
Ophthalmology department 607 (0.8%) 903 (0.6%)
Rehabilitation department 990 (1.3%) 2243 (1.5%)
Experts’ scores 7.24 ± 1.02 7.67 ± 0.84 <0.001 *
BERT prediction score 7.47 ± 0.89
LSTM prediction score 7.15 ± 1.05

*: p-value < 0.05.

Our team’s projection word embedding model allowed the model to have both the
vocabulary diversity of Wikipedia/PubMed and an understanding of medical terms in
EHR. The concept of projection word embedding used the results of our previous studies, a
concept in linear algebra that projects through matrix multiplication to allow all coordinates
to convert into a new coordinate system. Such conversion changes the correlation of certain
points while at the same time maintaining all current coordinates. In addition to the
original projection word embedding and LSTM architecture, we attempted to use BERT
architecture for feature extraction. BERT stands for Bidirectional Encoder Representations
from Transformers, the elementary unit of BERT architecture is the encoder’s Multi-Head
Self-Attention Layer in the transformer. In contrast, the overall architecture of BERT is
stacked by a bidirectional Transformer Encoder Layer. As shown in Table 2, in general, on
the ground of experts’ scoring, the trained scoring model BERT had a prediction score of
7.49± 0.28. In contrast, LSTM had 7.17± 0.31; after modification by the linear mixed model
(LMM), BERT’s and LSTM’s prediction scores were 7.36± 0.56 and 7.33± 0.65, respectively.
After layering different departments, such as internal medicine, surgery, obstetrics, and
pediatrics, it can be learned that BERT all had higher prediction scores than LSTM, while,
after LMM modification, all LSTM prediction scores increased. Through further looking
into different departments, it was found that most departments’ BERT prediction scores
were higher than that of LSTM, and the latter increased after LMM modification.

Table 2. BERT and LSTM original prediction scores and LMM-modified scores.

Experts’ Scores BERT Prediction
Scores

LSTM Prediction
Scores

LMM-Modified
BERT Prediction
Scores

LMM-Modified
LSTM Prediction
Scores

Overall 7.69 ± 0.64 7.49 ± 0.28 7.17 ± 0.31 7.36 ± 0.56 7.33 ± 0.65
Internal medicine 7.49 ± 0.66 7.37 ± 0.21 7.01 ± 0.20 7.14 ± 0.56 7.08 ± 0.65
Surgery 7.78 ± 0.55 7.49 ± 0.22 7.16 ± 0.17 7.54 ± 0.43 7.54 ± 0.51
Obstetrics and pediatrics 8.08 ± 0.69 7.68 ± 0.31 7.37 ± 0.31 7.70 ± 0.61 7.68 ± 0.79
Other departments 7.76 ± 0.60 7.57 ± 0.33 7.32 ± 0.40 7.39 ± 0.53 7.37 ± 0.61
Department
General surgery 7.69 ± 0.74 7.48 ± 0.53 7.26 ± 0.28 7.45 ± 0.56 7.45 ± 0.57
Pleural surgery 7.87 ± 0.25 7.55 ± 0.35 7.22 ± 0.16 7.55 ± 0.43 7.64 ± 0.48
Cardiovascular surgery 7.73 ± 0.56 7.38 ± 0.37 7.01 ± 0.05 7.34 ± 0.17 7.35 ± 0.34
Colorectal & rectal surgery 7.92 ± 0.18 7.73 ± 0.37 7.22 ± 0.16 7.87 ± 0.35 7.97 ± 0.40
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Table 2. Cont.

Experts’ Scores BERT Prediction
Scores

LSTM Prediction
Scores

LMM-Modified
BERT Prediction
Scores

LMM-Modified
LSTM Prediction
Scores

Urology surgery 7.76 ± 0.18 7.48 ± 0.29 7.14 ± 0.09 7.54 ± 0.25 7.48 ± 0.37
Pediatric Surgery 6.16 ± NA 6.86 ± 0.50 7.09 ± NA 6.86 ± NA 6.65 ± NA
Plastic surgery 7.98 ± 0.08 7.58 ± 0.32 7.20 ± 0.15 7.65 ± 0.23 7.65 ± 0.29
Pulmonary Medicine 7.58 ± 0.83 7.30 ± 0.57 6.98 ± 0.19 7.26 ± 0.58 7.22 ± 0.65
Cardiology 7.19 ± 0.97 7.02 ± 0.64 6.99 ± 0.08 6.83 ± 0.68 6.75 ± 0.73
Nephrology 8.13 ± 0.69 7.54 ± 0.55 7.12 ± 0.06 7.42 ± 0.47 7.39 ± 0.60
Blood Oncology 7.21 ± 0.55 6.89 ± 0.50 6.71 ± 0.16 6.77 ± 0.52 6.71 ± 0.74
Endocrine and metabolic 7.64 ± 0.26 7.38 ± 0.35 7.17 ± 0.04 7.35 ± 0.44 7.25 ± 0.55
Gastroenterology 7.19 ± 0.25 7.15 ± 0.26 6.96 ± 0.12 7.16 ± 0.30 7.09 ± 0.33
Rheumatism, immunology and
allergy 7.79 ± 0.21 7.33 ± 0.32 6.98 ± 0.14 7.29 ± 0.17 7.19 ± 0.22

Trauma 7.84 ± 1.32 7.39 ± 0.57 7.18 ± 0.02 7.21 ± 0.35 7.14 ± 0.47
Infection and Tropical Medicine 7.33 ± 0.53 7.09 ± 0.57 6.98 ± 0.07 6.94 ± 0.74 6.89 ± 0.87
Psychiatric department 8.41 ± 0.48 8.08 ± 0.47 8.00 ± 0.16 7.94 ± 0.59 7.94 ± 0.67
Neurological department 7.89 ± 0.24 7.62 ± 0.23 7.39 ± 0.06 7.60 ± 0.18 7.63 ± 0.25
Pediatric department 7.91 ± 0.85 7.51 ± 0.66 7.14 ± 0.10 7.52 ± 0.66 7.48 ± 0.93
Dental department 7.95 ± 0.25 7.05 ± 0.52 6.53 ± 0.09 6.89 ± 0.04 6.76 ± 0.04
Surgery department 7.81 ± NA 7.40 ± 0.26 7.14 ± NA 7.33 ± NA 7.25 ± NA
Dermatology department 8.58 ± NA 7.67 ± 0.64 6.83 ± NA 7.73 ± NA 7.85 ± NA
ENT department 7.37 ± 0.49 7.36 ± 0.38 7.29 ± 0.15 7.32 ± 0.47 7.37 ± 0.54
Radiology 6.85 ± NA 6.70 ± 0.17 6.67 ± NA 6.51 ± NA 6.57 ± NA
Family and Community Medicine 7.37 ± 0.41 7.19 ± 0.61 7.29 ± 0.09 6.91 ± 0.80 6.90 ± 1.15
Nuclear Medicine Department 8.76 ± NA 8.01 ± 0.45 7.54 ± NA 7.83 ± NA 8.02 ± NA
Neurosurgery 7.95 ± 0.49 7.59 ± 0.56 7.12 ± 0.07 7.78 ± 0.63 7.78 ± 0.75
Orthopedic department 7.38 ± 0.40 7.21 ± 0.34 7.09 ± 0.09 7.14 ± 0.38 7.11 ± 0.44
Obstetrics and Gynecology 8.31 ± 0.34 7.96 ± 0.41 7.67 ± 0.23 7.95 ± 0.49 7.96 ± 0.51
Ophthalmology department 7.86 ± 0.19 7.65 ± 0.26 7.56 ± 0.06 7.54 ± 0.27 7.53 ± 0.33
Rehabilitation department 8.06 ± 0.59 7.63 ± 0.41 7.29 ± 0.16 7.61 ± 0.25 7.51 ± 0.37

It can be learned from Table 3 that, when reviewer physicians’ scores and AI scores
were calculated using mean absolute error (MAE), both BERT and LSTM AI scores were
0.6~1.3 points lower than reviewer physicians’ scores; thus, the linear mixed model (LMM)
was introduced for modification, thereby reducing the score difference to 0.3~1 points,
showing a significant reduction (p < 0.001) in score difference. The reason for the modifica-
tion using LMM is that an ordinary linear regression contains only two influencing factors:
fixed effect and noise. The latter is a random factor not considered in our model, while the
former are those predictable factors that can also be completely divided. The AI scoring of
medical records after modification by LMM is also more realistic. After department layer-
ing, it was found that, in some departments, LMM-modified MAE was not significantly
reduced comparing with the original MAE. Hence, experts’ scores were made into a heat
map (Figure 2), where it was found that some groups of scoring physicians and scored
physicians had closer scores, and were separately analyzed. In Table 4, medical record
prediction scores and MAE are analyzed from Block A to H, respectively, and, except for
block F, most blocks had similar record scores with previous results, and the MAE of LSTM
prediction scores significantly reduced (p < 0.05) after LMM modification.

Table 3. The difference between the original AI/LMM-modified score and the expert score.

Original MAE a LMM-modified MAE b p-Value

Overall
BERT 0.84 ± 0.27 0.70 ± 0.33 <0.001 *
LSTM 1.00 ± 0.32 0.66 ± 0.39 <0.001 *

Internal medicine BERT 0.82 ± 0.27 0.66 ± 0.37 0.007 *
LSTM 0.96 ± 0.32 0.63 ± 0.41 <0.001 *

Surgery BERT 0.86 ± 0.24 0.72 ± 0.25 0.011 *
LSTM 1.04 ± 0.25 0.67 ± 0.30 <0.001 *

Obstetrics and pediatrics BERT 1.05 ± 0.30 0.82 ± 0.32 0.069
LSTM 1.21 ± 0.31 0.74 ± 0.44 <0.001 *
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Table 3. Cont.

Original MAE a LMM-modified MAE b p-Value

Other departments BERT 0.79 ± 0.26 0.70 ± 0.35 0.142
LSTM 0.96 ± 0.35 0.67 ± 0.41 <0.001 *

Department
General surgery BERT 0.80 ± 0.21 0.75 ± 0.15 0.645

LSTM 1.03 ± 0.20 0.72 ± 0.12 0.003 *
Pleural surgery BERT 0.72 ± 0.10 0.49 ± 0.26 0.200

LSTM 0.91 ± 0.20 0.38 ± 0.27 0.100
Cardiovascular surgery BERT 0.88 ± 0.26 0.86 ± 0.42 0.589

LSTM 1.09 ± 0.39 0.79 ± 0.51 0.065
Colorectal & rectal surgery BERT 0.74 ± 0.12 0.61 ± 0.25 0.686

LSTM 0.97 ± 0.10 0.57 ± 0.34 0.057
Urology surgery BERT 0.73 ± 0.06 0.67 ± 0.10 0.318

LSTM 0.93 ± 0.10 0.63 ± 0.20 0.002 *
Plastic surgery BERT 0.76 ± 0.05 0.59 ± 0.15 0.057

LSTM 0.97 ± 0.08 0.52 ± 0.22 0.029 *
Pulmonary Medicine BERT 0.94 ± 0.32 0.69 ± 0.29 0.040 *

LSTM 1.14 ± 0.36 0.65 ± 0.27 0.002 *
Cardiology BERT 1.01 ± 0.41 0.75 ± 0.33 0.136

LSTM 1.12 ± 0.34 0.74 ± 0.34 0.024 *
Nephrology BERT 0.89 ± 0.29 0.89 ± 0.41 0.841

LSTM 1.22 ± 0.47 0.82 ± 0.49 0.222
Blood Oncology BERT 0.85 ± 0.21 0.66 ± 0.23 0.130

LSTM 0.91 ± 0.22 0.72 ± 0.28 0.195
Endocrine and metabolic BERT 0.82 ± 0.03 0.68 ± 0.16 0.343

LSTM 0.95 ± 0.09 0.63 ± 0.23 0.114
Gastroenterology BERT 0.60 ± 0.11 0.42 ± 0.20 0.050 *

LSTM 0.66 ± 0.17 0.37 ± 0.23 0.015 *
Rheumatism, immunology and allergy BERT 0.74 ± 0.11 0.69 ± 0.13 0.548

LSTM 1.02 ± 0.15 0.70 ± 0.16 0.032 *
Trauma BERT 1.08 ± 0.22 0.88 ± 0.70 1.000

LSTM 1.19 ± 0.63 0.84 ± 0.72 0.667
Infection and Tropical Medicine BERT 0.69 ± 0.17 0.66 ± 0.81 0.028 *

LSTM 0.78 ± 0.26 0.63 ± 0.91 0.028 *
Psychiatric department BERT 0.73 ± 0.26 0.59 ± 0.47 0.328

LSTM 1.03 ± 0.29 0.52 ± 0.54 0.028 *
Neurological department BERT 0.72 ± 0.06 0.56 ± 0.06 0.002 *

LSTM 0.82 ± 0.09 0.44 ± 0.11 0.002 *
Pediatric department BERT 1.18 ± 0.35 0.95 ± 0.33 0.328

LSTM 1.36 ± 0.30 0.90 ± 0.49 0.007 *
Dental department BERT 0.96 ± 0.10 1.12 ± 0.24 0.400

LSTM 1.52 ± 0.19 1.23 ± 0.23 0.400
ENT department BERT 0.73 ± 0.13 0.53 ± 0.17 0.024 *

LSTM 0.78 ± 0.15 0.46 ± 0.20 <0.001 *
Family and Community Medicine BERT 0.75 ± 0.06 0.74 ± 0.43 0.700

LSTM 0.80 ± 0.05 0.81 ± 0.62 0.700
Neurosurgery BERT 1.12 ± 0.28 0.80 ± 0.10 0.002 *

LSTM 1.21 ± 0.30 0.77 ± 0.14 0.002 *
Orthopedic department BERT 0.78 ± 0.34 0.71 ± 0.38 0.630

LSTM 0.92 ± 0.28 0.68 ± 0.42 0.089
Obstetrics and Gynecology BERT 0.88 ± 0.03 0.64 ± 0.24 0.009 *

LSTM 1.02 ± 0.19 0.53 ± 0.28 0.004 *
Ophthalmology department BERT 0.56 ± 0.17 0.55 ± 0.26 0.690

LSTM 0.60 ± 0.09 0.57 ± 0.30 0.222
Rehabilitation department BERT 0.88 ± 0.12 0.77 ± 0.22 0.180

LSTM 1.06 ± 0.38 0.77 ± 0.38 0.180
a Original MAE: Expert’s score—BERT/LSTM prediction score. b LMM-modified MAE: Expert’s score—LMM-modified BERT/LSTM
prediction score. *: p-value < 0.05.
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Table 4. Experts’ scores, BERT and LSTM prediction scores, and MAE of different blocks.

Block Experts’
Score (a)

BERT
Score (b)

LSTM
Score (c) p-Value

LMM-
Modified

BERT
Score (d)

LMM-
Modified

LSTM
Score (e)

p-Value |a-b| # |a-d| # p-Value |a-c| # |a-e| # p-Value

A 7.44 ± 0.66 7.35 ± 0.17 6.99 ± 0.17 <0.001 * 7.08 ± 0.56 7.02 ± 0.66 0.626 0.83 ± 0.27 0.66 ± 0.38 0.008 * 0.97 ± 0.33 0.63 ± 0.43 <0.001 *
B 7.35 ± 0.51 7.43 ± 0.06 7.32 ± 0.17 0.087 7.32 ± 0.47 7.38 ± 0.54 0.824 0.7 ± 0.13 0.51 ± 0.17 0.013 * 0.76 ± 0.16 0.45 ± 0.2 0.002 *
C 7.88 ± 0.14 7.56 ± 0.09 7.4 ± 0.1 0.016 * 7.59 ± 0.18 7.63 ± 0.24 0.740 0.69 ± 0.03 0.54 ± 0.1 0.005 * 0.77 ± 0.08 0.41 ± 0.14 <0.001 *
D 7.94 ± 1 7.43 ± 0.19 7.13 ± 0.08 0.005 * 7.57 ± 0.6 7.61 ± 0.84 0.932 1.29 ± 0.29 0.88 ± 0.31 0.042 * 1.44 ± 0.3 0.74 ± 0.35 0.004 *
E 7.74 ± 0.91 7.51 ± 0.08 6.98 ± 0.18 <0.001 * 7.19 ± 0.45 7.12 ± 0.56 0.772 1.05 ± 0.33 0.85 ± 0.4 0.227 1.25 ± 0.41 0.8 ± 0.35 0.016 *
F 7.3 ± 0.63 6.97 ± 0.24 6.61 ± 0.17 0.004 * 6.75 ± 0.54 6.69 ± 0.74 0.874 0.88 ± 0.22 0.73 ± 0.28 0.258 1 ± 0.27 0.78 ± 0.3 0.154
G 7.76 ± 0.15 7.46 ± 0.08 7.08 ± 0.11 <0.001 * 7.52 ± 0.25 7.46 ± 0.37 0.707 0.69 ± 0.08 0.63 ± 0.12 0.238 0.93 ± 0.12 0.6 ± 0.2 0.003 *
H 8.41 ± 0.47 8.1 ± 0.06 8.05 ± 0.18 0.436 7.93 ± 0.59 7.95 ± 0.67 0.962 0.71 ± 0.23 0.58 ± 0.48 0.489 1 ± 0.3 0.51 ± 0.55 0.045 *

#: The mean absolute error (MAE), the absolute value of the original score minus the predicted score. *: p-value < 0.05.
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In spite of this, we were still unable to identify the reason why the MAE of certain
departments had no significant reduction after LMM modification. Thus, heat map analysis
was performed on LMM-modified LSTM prediction scores. Figure 3 shows that some
reviewers’ LMM-modified LSTM prediction scores had relatively greater MAE. After
grouping using LMM modified MAE (Grade-LMM modified LSTM), experts’ scores were
close among groups, but BERT and LSTM prediction scores were lower than the original
experts’ scores. In Figure 4, We further using MAE to evaluate model efficiency, and then
comparing MAE (|Grade—LMM modified BERT|, |Grade—LMM modified BERT|) of
LMM-modified BERT or LSTM with the MAE (|Grade—BERT|, |Grade—LSTM|) of
the original BERT or LSTM, it was found MAE was effectively reduced through LMM
modification in Q1~Q3, but not in Q4. Thus, it is suspected that some scoring physicians in
Q4 may have scored incorrectly.
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score from the LMM modified LSTM prediction score, and using the MAE and coring physicians to conduct a heat map
analysis, it can be found that some reviewer scores are on the high side.
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Figure 4. Using LMM modified MAE (Grade-LMM modified LSTM) for interquartile range grouping. (A): Compare the
scores of Experts, BERT and LSTM. Y-axis: medical record scores, X-axis: Experts’ score, BERT prediction score, LSTM
prediction score. (B): Compare the original MAE with the LMM modified MAE. Y-axis: mean absolute error (MAE), X-axis:
|Grade—BERT|, |Grade—LMM modified BERT|, |Grade—LSTM|, |Grade—LMM modified BERT| for model efficiency
evaluation. The LMM modified MAE (Grade-LMM modified LSTM) is grouped by interquartile range and divided into Q1,
Q2, Q3, and Q4.



Healthcare 2021, 9, 1298 15 of 18

4. Discussion

In this study, the projection word embedding model was used to develop an AI
system to evaluate the writing quality of inpatient medical records. The AI system is
already capable of accurate classification to level 3 ICD-10 coding, combined with results
from previous studies. Since level 3 coding is already at the disease level, subsequent
coding will all just be remarks (such as location), and reaching such a level will allow
for the possibility of full automation of common disease classification tasks, as well as
extraction of disease features from other medical descriptions, through this algorithm. In
addition to the original word embedding and LSTM architecture, BERT architecture was
also employed to extract disease features for medical record scoring. LMM was further
used for modification to get AI scores closer to actual reviewer physicians’ scores. Moreover,
it was also identified that some physicians over-scored medical records. If these scoring
standards can be improved in the future, a better medical writing quality could be expected.

In addition, why is the quality of medical record writing so important? Because the
medical record is the historical record of the patient’s health care; it is also the basis of
care, and its content records the patient’s condition during the care process, the reason and
result of the inspection, and the treatment method and result. In recent studies, it is feasible
to use electronic health records (EHR) to predict disease risk, such as atrial fibrillation
(AF) [49], coronary heart disease in patients with hypertension [50], fall risk [51], multiple
sclerosis disease [52], and cervical cancer [53]. Over the past two decades, the investigation
of genetic variation underlying disease susceptibility has increased considerably. Most
notably, genome-wide association studies (GWAS) have investigated tens of millions of
single-nucleotide polymorphisms (SNPs) for associations with complex diseases. However,
results from numerous GWAS have revealed that the majority of statistically significantly
associated genetic variants have small effects [54] and may not be predictive of disease
risks [55], and many diseases are associated with tens of thousands of genetic variants [56].
These findings have led to the resurgence of the polygenic risk score (PRS), an aggregate
measure of many genetic variants weighted by their individual effects on a given phenotype.
However, epidemiologic studies are expensive and complex to run, which raises the
question of whether a PRS could be developed and applied in a clinical setting using
genetic data that are more readily available. Recently, some scholars proposed new ideas
for developing and implementing PRS predictions using biobank-linked EHR data [57].

For the medical records scoring system, this not only saves doctors the time for scoring
medical records but also can get feedback immediately after the writing is completed to
improve the quality of medical record writing. In the past research, clinicians spent 3.7 h
per day, or 37% of their work day, on EHR [58]. There was a marked reduction in EHR time
with both clinician and resident seniority. Despite this improvement, the total time spent
on EHR remained exceedingly high amongst even the most experienced physicians [58].
The significance of an increasing shift towards EHR is a growing paradigm that cannot be
understated, particularly in the current era of healthcare, and there is increasing scrutiny
on documentation [59,60]. These increased demands can lead to EHR fatigue and physician
burnout. In a survey of a general internal medicine group, 38% reported feeling burnt out,
with 60% citing high documentation pressure and 50% describing too much EHR time at
home [61]. Burnout has been linked to an increased risk of resident’s wellbeing [62].

There are still some limitations for electronic medical records. First, this scoring system
can only be used in our hospital because the medical record system of different hospitals
do not talk to each other. Second, entering data into an EHR requires a doctor to spend a lot
of time doing so, leading to most physicians experiencing burnout symptoms due to EMR-
related workloads. Third, cyber-attacks are a perennial concern for EHRs. It is, therefore,
imperative that cybersecurity is continually enhanced. Fourth, timing discrepancies occur
in EHRs, and they can lead to serious clinical consequences.

In summary, combining projection word embedding and LSTM with LMM can give
better prediction scores. This system can be used to assist medical record scoring so that
young physicians can get immediate writing feedback, so as to improve the quality of
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medical record writing in my country and let the public, Medical units, and insurance
units can all get better help. In the future, it may be possible to actively introduce such
technologies into hospitals to achieve personalized precision medicine.
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